
SOLUTIONS OF SYSTEMS OF ELLIPTIC DIFFERENTIAL
EQUATIONS ON CIRCULAR DOMAINS

JOANNA GAWRYCKA AND S LAWOMIR RYBICKI†

Abstract. We study global bifurcation of weak solutions of systems of elliptic differ-
ential equations considered on SO(2)−invariant domains. We formulate sufficient condi-
tions for the existence of unbounded continua of nontrivial solutions branching from the
trivial ones. As the main tool we use the degree for SO(2)−equivariant gradient maps
defined by the second author in [26].

1. Introduction

Rabinowitz global bifurcation theorem considers problems of the form

u = λLu + N(u, λ) (1.1)

where λ ∈ R, u ∈ X, X is a real Banach space, L : X → X is a compact linear operator
and N : X × R → X is a compact nonlinear operator with N(u, λ) = o(‖u‖) for u near
0 ∈ E uniformly on compact λ intervals. Let χ(L) denote the set of characteristic values
of L. Solutions of (1.1) of the form (0, λ) ∈ X × R are called trivial. Define the set of
nontrivial solutions of (1.1) as follows

N = {(u, λ) ∈ (X \ {0})× R : u = λLu + N(u, λ)} .

Fix λi ∈ χ(L) and denote by BIFLS(λi) ∈ {0,±2} ⊂ Z the bifurcation index at (λi, 0)
computed in terms of the Leray-Schauder topological degree. The classical Rabinowitz
alternative can be formulated in the following way.

Theorem 1.1 ([20]). If λ0 ∈ χ(L) has odd algebraic multiplicity, then there is a maximal
subcontinuum Cλ0 ⊂ closure(N ) such that (0, λ0) ∈ Cλ0 and either

(1) Cλ0 is unbounded, or
(2) Cλ0∩({0}×R) = {(0, λ0), (0, λ1), . . . , (0, λk)} ⊂ ({0}×χ(L)) ⊂ ({0}×R); moreover

k∑
i=0

BIFLS(λi) = 0 ∈ Z (1.2)

In other words the Rabinowitz global bifurcation theorem shows that for a large class
of nonlinear eigenvalue problems a continuum C (i.e. a closed, connected set) of solutions
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bifurcates from the trivial solution at each characteristic value (eigenvalue) of odd multi-
plicity of the problem linearized at the trivial solution. Each continuum (1) must either be
unbounded, or (2) must meet some other characteristic value (eigenvalue). Moreover, the
sum of bifurcation indices computed at characteristic values which belong to the bounded
continuum C equals 0 ∈ Z. In other words a local linearized analysis forces the existence
of a global bifurcation. This is a very powerful results that is quoted very often.

Many authors have answered the following question

How to exclude possibility (2)?

On one hand to exclude possibility (2) authors studied the nodal properties and sym-
metries of bifurcating solutions which are preserved on global continua of solutions.

It was shown in [23], using the nodal properties of solutions, that for the nonlinear
Sturm-Liouville problem possibility (2) can not hold for the bifurcating continua in this
problem. Moreover, it was shown in [23] that the continuum of positive solutions of elliptic
differential equations emanating from the principal eigenvalue does not satisfy possibility
(2). Many interesting results in this area have been proved, by using the nodal properties
and symmetries of bifurcating solutions, by Healey and Kielhöfer in [11, 12, 13, 14, 17]
and Rynne in [31].

On the other hand Cosner has considered in [5], under some additional assumptions,
class of elliptic differential equations and has proved that the Morse index of solutions is
invariant along continua of solutions of these equations. Which implies that possibility
(2) can never occurs.

Summing up, all the above mentioned authors have studied properties of solutions of
differential equations which were invariant along continua of solutions of these equations.
Since different continua of solutions have possessed different properties, these continua
have been separated and therefore unbounded.

Consider nonlinear eigenvalue problem (1.1) and assume additionally that X is a Hilbert
space which is an orthogonal representation of the group SO(2) and that this problem
is SO(2)−invariant and possesses variational structure. We have proved the Rabinowitz
global bifurcation theorem for the class of SO(2)−equivariant gradient (orthogonal) maps,
see [26]. In this case the bifurcation index BIF(λi) is an element of the tom Dieck ring
U(SO(2)). Since the ring structure in U(SO(2)) is much more complicated than the ring
structure in Z, it can happen that the sum of any finite number of bifurcation indices is
nontrivial in U(SO(2)). In other words we can prove that all the bifurcating continua of
solutions are unbounded. Notice that, it can happen that some of them are not separated.

We have used this idea in [27, 29, 30]. In article [27] we have studied global and
symmetry-breaking solutions of elliptic differential equations on an annulus. We have
proved the existence of unbounded continua of nontrivial solutions with symmetry-brea-
king phenomenon. In [29] we have considered equation of the form −∆Sn−1u = λf(u),
where ∆Sn−1 is the Laplace-Beltrami operator on Sn−1, and have proved that any continu-
um of nontrivial solutions bifurcating from the trivial ones is unbounded in H1(Sn−1)×R.
In [30] we have studied system of elliptic differential equations on SO(2)−invariant domain
and have proved that if the number m of equations of this system is even then any
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continuum of nontrivial solutions emanating from the essential eigenvalue is unbounded

in
m⊕

i=1

H1
0(Ω).

In this article we study global bifurcations of solutions of system of elliptic differential
equations {

−∆u = ∇uF (u, λ) in Ω
u = 0 on ∂Ω

(1.3)

on an SO(2)−symmetric domain Ω.
We remark that there is a vast literature on the subject of reaction-diffusion systems,

including the steady state situation as above, in view of its applications to chemical,
biological and physical phenomena among others. Here we mention only [4, 18, 25].

Since we assume that considered system of equations possesses variational structure,
as the main tool we use the degree for SO(2)−equivariant gradient maps and the Rabi-
nowitz alternative for SO(2)−equivariant gradient maps, see [26]. We prove the sufficient
conditions for the existence of unbounded continua of nontrivial solutions emanating from
the trivial ones and the necessary conditions for the existence of bounded continua. In
this article we generalize results of [29].

After introduction this article is organized as follows.
In Section 2 we have compiled basic facts on the degree for SO(2)−equivariant gradient

maps.
Section 3 is devoted to the study of systems of linear equations (3.1), (3.2). In this

section we perform local computations of bifurcation indices. In Lemma 3.6 we formulate
the necessary condition for the existence of a bifurcation point. The formula for the
bifurcation index, computed in terms of the degree for SO(2)−equivariant gradient maps,
is proved in Lemma 3.7. The notion of an essential pair is introduced in Definition 3.1.
Properties of the bifurcation index are described in Lemmas 3.9, 3.10.

Section 4 contains the main results of this article. In this section we study system of
elliptic nonlinear differential equations (4.1). Theorem 4.1 is the Rabinowitz alternative
for solutions of system (4.1). In Corollary 4.1 we formulate sufficient conditions for the
existence of unbounded continua of nonzero solutions of system (4.1). Corollary 4.2
contains necessary conditions for the existence of bounded continua of nonzero solutions
of system (4.1).

To illustrate the abstract results proved in this article in Section 5 we consider system
(4.1) for Ω = B2, B3.

In Section 6 we present some comments and final remarks.

2. ∇SO(2)−degree and Its Properties

In this section, for the convenience of the reader, we remind the main properties of the
the degree for SO(2)−equivariant gradient maps. We denote it briefly by∇SO(2)−deg. Put

U(SO(2)) = Z⊕

(
∞⊕

k=1

Z

)
and define actions +, ? : U(SO(2))× U(SO(2)) → U(SO(2))

as follows
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α + β = (α0 + β0, α1 + β1, . . . , αk + βk, . . .) (2.1)

α ? β =(α0 · β0, α0 · β1 + β0 · α1, . . . , α0 · βk + β0 · αk, . . .) (2.2)

where α = (α0, α1, . . . , αk, . . .), β = (β0, β1, . . . , βk, . . .) ∈ U(SO(2)). It is easy to check
that (U(SO(2)), +, ?) is a commutative ring with unit. Ring (U(SO(2)), +, ?) is known
as the tom Dieck ring of the group SO(2). For a definition of the tom Dieck ring U(G)
for any compact Lie group G we refer the reader to [8]. Additionally define U±(SO(2)) ⊂
U(SO(2)) as follows

U±(SO(2)) = {α ∈ U(SO(2)) : ±αk ≥ 0 for all k ∈ N ∪ {0}} .

Remark 2.1. It is easy to check that ? : U∓(SO(2))× U−(SO(2)) → U±(SO(2)).

In the following lemma we collect some basic properties of the tom Dieck ring U(SO(2)).

Lemma 2.1. Let α = (α0, α1, . . . , αk, . . .), β = (β0, β1, . . . , βk, . . .) ∈ U(SO(2)). Then,

(1) I = (1, 0, . . .) ∈ U(SO(2)) is the unit in U(SO(2)),
(2) α0 = ±1 iff α is invertible in U(SO(2)),
(3) if α± = (±1, α1, . . . , αk, . . .), then α−1

± = (±1,−α1, . . . ,−αk, . . .),
(4) if α± = (±1, α1, . . . , αk, . . .), then

(a) αn
+ = (1, nα1, . . . , nαk, . . .),

(b) αn
− = ((−1)n, (−1)n+1nα1, . . . , (−1)n+1nαk, . . .) .

(5) if α0 = β0 = 0, then α ? β = Θ ∈ U(SO(2)).

An easy proof of this lemma is left to the reader.

If δ1, . . . , δq ∈ U(SO(2)), then

q∏
j=1

δj = δ1 ? . . . ? δq. Moreover, it is understood that∏
j∈∅

δj = I ∈ U(SO(2)).

Let V be a real, finite-dimensional, orthogonal representation of the group SO(2). Define

• Ck(V, R) = {f : V → R : f is a Ck map},
• Ck

SO(2)(V, R) = {f ∈ Ck(V, R) : f is SO(2)-invariant},
• GLSO(2)(V ) = {L ∈ Aut(V ) : L is SO(2)-equivariant},
• GL∇

SO(2)(V ) = {L ∈ GLSO(2)(V ) : 〈Lv, w〉 = 〈v, Lw〉 for any v, w ∈ V }.
Let f ∈ C1

SO(2)(V, R). Since V is an orthogonal representation, ∇f : V → V is an

SO(2)−equivariant C0−map. Choose an open, bounded and SO(2)−invariant subset
Ω ⊂ V such that (∇f)−1(0) ∩ ∂Ω = ∅. Under these assumptions we have defined in [26]
the degree for SO(2)−equivariant gradient maps ∇SO(2)−deg(∇f, Ω) ∈ U(SO(2)) with
coordinates

∇SO(2)−deg(∇f, Ω) =

= (∇SO(2)−degSO(2)(∇f, Ω),∇SO(2)−degZ1
(∇f, Ω), . . . ,∇SO(2)−degZk

(∇f, Ω), . . .).

Throughout this article γ > 0 and Dγ(V ) = {v ∈ V :| v |< γ}. In the following theorem
we formulate the main properties of the degree of SO(2)−equivariant gradient maps.



SO(2)−SYMMETRIC ELLIPTIC PROBLEMS 5

Theorem 2.1 ([26]). Under the above assumptions the degree for SO(2)−equivariant
gradient maps has the following properties:

(1) if ∇SO(2)−deg(∇f, Ω) 6= Θ, then (∇f)−1(0) ∩ Ω 6= ∅,
(2) if ∇SO(2)−degH(∇f, Ω) 6= 0, then (∇f)−1(0) ∩ ΩH 6= ∅, where ΩH denotes the set

of fixed points of the action of the subgroup H ⊂ SO(2) on Ω,
(3) if Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅, then

∇SO(2)−deg(∇f, Ω) = ∇SO(2)−deg(∇f, Ω0) +∇SO(2)−deg(∇f, Ω1),

(4) if Ω0 ⊂ Ω is an open SO(2)−equivariant subset and (∇f)−1(0) ∩ Ω ⊂ Ω0, then

DEG(∇f, Ω) = DEG(∇f, Ω0),

(5) if f ∈ C1
SO(2)(V × [0, 1], R) is such that (∇vf)−1(0) ∩ (∂Ω× [0, 1]) = ∅, then

∇SO(2)−deg(∇f0, Ω) = ∇SO(2)−deg(∇f1, Ω),

(6) if W is an orthogonal representation of the group SO(2), then

∇SO(2)−deg((∇f, Id), Ω×Dγ(W )) = ∇SO(2)−deg(∇f, Ω),

(7) if f ∈ C2
SO(2)(V, R) is such that ∇f(0) = 0 and ∇2f(0) is an SO(2)−equivariant

self-adjoint isomorphism then there is γ > 0 such that

∇SO(2)−deg(∇f, Dγ(V )) = ∇SO(2)−deg(∇2f(0), Dγ(V )).

Below we formulate product formula for the degree for SO(2)−equivariant gradient maps.

Theorem 2.2 ([28]). Let Ωi ⊂ Vi be an open, bounded and SO(2)−invariant subset of
SO(2)−representation Vi, i = 1, 2. Let fi ∈ C1

SO(2)(Vi, R) be such that (∇fi)
−1 (0)∩ ∂Ωi =

∅, i = 1, 2. Then

∇SO(2)−deg((∇f1,∇f2), Ω1 × Ω2) = ∇SO(2)−deg(∇f1, Ω1) ?∇SO(2)−deg(∇f2, Ω2).

For j ∈ N define a map ρj : SO(2) → GL(2, R) as follows

ρj(ei·θ) =

[
cos j · θ − sin j · θ
sin j · θ cos j · θ

]
0 ≤ θ < 2 · π.

For k, j ∈ N we denote by R[k, j] the direct sum of k copies of (R2, ρj), we also denote by
R[k, 0] the trivial k−dimensional representation of SO(2). We say that two representations
V and W are equivalent if there exists an equivariant, linear isomorphism T : V → W .
The following classic result gives a complete classification (up to equivalence) of finite–
dimensional representations of the group SO(2) (see [1]).

Theorem 2.3 ([1]). If V is a finite-dimensional representation of the group SO(2) then
there exist finite sequences {ki}, {ji} satisfying (∗) ji ∈ {0}∪N, ki ∈ N, 1 ≤ i ≤ r,
j1 < j2 < · · · < jr such that the representation V is equivalent to the representation

r⊕
i=1

R[ki, ji]. Moreover, the equivalence class of V (V ≈
r⊕

i=1

R[ki, ji]) is uniquely deter-

mined by {ji}, {ki} satisfying (∗).
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We will denote by m−(L) the Morse index of a symmetric matrix L.
To apply successfully any topological degree we need computational formulas for this
invariant. Below we show how to compute the degree for SO(2)−equivariant gradient
maps of linear, self-adjoint, SO(2)−equivariant isomorphism.

Lemma 2.2 ([26]). If V ≈ R[k0, 0] ⊕ R[k1, m1] ⊕ . . . ⊕ R[kr, mr], L ∈ GL∇
SO(2)(V ) and

γ > 0 then

(1) L = diag (L0, L1, . . . , Lr),
(2)

∇SO(2)−degH(L, Dγ(V )) =


(−1)m−(L0), for H = SO(2),

(−1)m−(L0) · m−(Li)

2
, for H = Zmi

,

0, for H /∈ {SO(2), Zm1 , . . . , Zmr},
(3) in particular, if L = −Id, then

∇SO(2)−degH(−Id, Dγ(V )) =


(−1)k0 , for H = SO(2),

(−1)k0 · ki, for H = Zmi
,

0, for H /∈ {SO(2), Zm1 , . . . , Zmr}.
The following lemma is a direct consequence of Lemmas 2.1, 2.2.

Lemma 2.3. If V ≈ R[k0, 0] ⊕ R[k1, m1] ⊕ . . . ⊕ R[kr, mr], L ∈ GL∇
SO(2)(V ) and γ > 0

then

(1) ∇SO(2)−deg(L, Dγ(V )) is invertible in U(SO(2)),

(2) (−1)m−(L0) · ∇SO(2)−deg(L, Dγ(V )) ∈ U+(SO(2)),

(3)
(
∇SO(2)−deg(L, Dγ(V ))

)2n ∈ U+(SO(2)) for any n ∈ N,

(4) (−1)k0 · ∇SO(2)−deg(−Id, Dγ(V )) ∈ U+(SO(2)),
(5) if n ∈ N, then

((
∇SO(2)−deg(−Id, Dγ(V ))

)2n
)

H
=


1, for H = SO(2),

2 · n · ki, for H = Zmi
,

0, for H /∈ {SO(2), Zm1 , . . . , Zmr}.

Let (H, 〈·, ·〉H) be an infinite-dimensional, separable Hilbert space which is an orthogonal
representation of the group SO(2) and let C1

SO(2)(H, R) denote the set of SO(2)−invariant

C1−functionals. Fix Φ ∈ C1
SO(2)(H, R) such that

∇Φ(u) = u−∇η(u), (2.3)

where ∇η : H → H is an SO(2)−equivariant compact operator. Let Ω ⊂ H be an
open bounded and SO(2)−invariant set such that (∇Φ)−1 (0) ∩ ∂Ω = ∅. In this situation
∇SO(2)−deg(Id−∇η, Ω) ∈ U(SO(2)) is well-defined, see [26].
Let L : H → H be a linear, bounded, self-adjoint, SO(2)−equivariant operator with spec-
trum σ(L) = {λi}. By VL(λi) we will denote eigenspace of L corresponding to eigenvalue
λi and we put µ(λi) = dim VL(λi). In other words µ(λi) is the multiplicity of λi. Since
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operator L is linear, bounded, self-adjoint, and SO(2)−equivariant, VL(λi) is a finite-
dimensional representation of the group SO(2). Define Dγ(H) = {h ∈ H : ‖h‖H < γ}.
Combining Theorem 4.5 in [26] with Theorem 2.2 we obtain the following theorem.

Theorem 2.4. Under the above assumptions if 1 /∈ σ(L), then

∇SO(2)−deg(Id− L, Dγ(H)) =
∏
λi>1

∇SO(2)−deg(−Id, Dγ(VL(λi))).

By C1
SO(2)(H×R, R) we will denote the set of families of SO(2)−invariant C1−functionals.

Let functional Φ ∈ C1
SO(2)(H × R, R) be such that Φ(u, λ) = 1

2
〈u − λLu, u〉H + η(u, λ),

where L : H → H is an SO(2)−equivariant, linear, self-adjoint, compact operator and
∇uη : H× R → H is an SO(2)−equivariant compact operator and such that

a) ∇uη(0, λ) = 0, for all λ ∈ R,
b) ∇uη(h, λ) = o(‖h‖), uniformly on bounded λ−intervals.

Put N (Φ) = {(u, λ) ∈ (H \ {0}) × R : ∇uΦ(u, λ) = 0}. Let C (λ0) denote connected
component of closure(N (Φ)) such that (0, λ0) ∈ C (λ0) .

Definition 2.1. A point (0, λ0) ∈ H × R is said to be a branching point of solutions of
the equation ∇uΦ(u, λ) = 0, if C(λ0) \ {(0, λ0)} 6= ∅. A point (0, λ0) ∈ H×R is said to be
a bifurcation point of solutions of the equation ∇uΦ(u, λ) = 0, if (0, λ0) ∈ closure(N (Φ)).

Of course any branching point is a bifurcation point. It is worth to point out that there
are bifurcation points which are not branching points.

Remark 2.2. Suppose that Φ ∈ C2
SO(2)(H, R). Is is well-known that if (0, λ0) ∈ H× R is

a bifurcation point of solutions of the equation ∇uΦ(u, λ) = 0, then ∇2
uΦ(0, λ0) is not an

isomorphism. In other words if (0, λ0) ∈ H × R is a bifurcation point of solutions of the
equation ∇uΦ(u, λ) = 0, then λ0 is a characteristic value of L.

Fix λi0 ∈ σ(L). Choose ε > 0 such that λ−1
i0

is the only characteristic value of L in

[λ−1
i0
− ε, λ−1

i0
+ ε] and define a bifurcation index BIF

(
λ−1

i0

)
∈ U(SO(2)) as follows

BIF
(
λ−1

i0

)
=

= ∇SO(2)−deg(Id−
(
λ−1

i0
+ ε
)
L, Dγ(H))−∇SO(2)−deg(Id−

(
λ−1

i0
− ε
)
L, Dγ(H)).

Denote

(1) σ+(L) = σ(L) ∩ (0, +∞) = {λ+
1 , λ+

2 , . . . , λ+
i , . . .},

(2) σ−(L) = σ(L) ∩ (−∞, 0) = {λ−1 , λ−2 , . . . , λ−i , . . .},
with order λ−1 < λ−2 < . . . < λ−i < . . . < 0 < . . . < λ+

i < . . . < λ+
2 < λ+

1 .

Lemma 2.4. Under the above assumptions the following formulas hold true:

(1) BIF
((

λ+
1

)−1
)

= ∇SO(2)−deg
(
−Id, Dγ

(
VL

(
λ+

1

)))
− I,

(2) for i0 ≥ 2,

BIF
((

λ+
i0

)−1
)

=
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= ∇SO(2)−deg

(
−Id, Dγ

(
i0−1⊕
i=1

VL

(
λ+

i

)))
?
(
∇SO(2)−deg

(
−Id, Dγ

(
VL

(
λ+

i0

)))
− I
)
,

(3) BIF
((

λ−1
)−1
)

= I−∇SO(2)−deg
(
−Id, Dγ

(
VL

(
λ−1
)))

,

(4) for i0 ≥ 2,

BIF
((

λ−i0
)−1
)

=

= ∇SO(2)−deg

(
−Id, Dγ

(
i0−1⊕
i=1

VL

(
λ−i
)))

?
(
I−∇SO(2)−deg

(
−Id, Dγ

(
VL

(
λ−i0
))))

.

The proof of the above lemma is in fact direct consequence of Theorem 2.4.
The following theorem is analogous to the classical Rabinowitz global bifurcation theorem.
Rabinowitz alternative has been proved, by using the Leray Schauder degree, for the
operators in the form compact perturbation of the identity. In our theorem we have
assumed additionally that operators are potential and SO(2)−equivariant. Therefore
to prove this theorem we have used infinite dimensional version of the the degree for
SO(2)−equivariant gradient maps. In other words we study global bifurcations of critical
points of SO(2)−invariant functionals. We formulate sufficient conditions for the existence
of branching points of critical points of functionals. Moreover, we study global properties
of closed connected sets of critical points.

Theorem 2.5 ([26]). Fix λi0 ∈ σ(L) \ {0} such that BIF
(
λ−1

i0

)
6= Θ ∈ U(SO(2)). Then

(1) either C
(
λ−1

i0

)
is unbounded in H× R,

(2) or C
(
λ−1

i0

)
is bounded in H × R and additionally the following conditions are sa-

tisfied

(a) C
(
λ−1

i0

)
∩ ({0} × R) = {0} ×

(
p⋃

j=0

{
λ−1

ij

})
,

(b)

p∑
j=0

BIF
(
λ−1

ij

)
= Θ ∈ U(SO(2)).

3. Linear equation

One of the most important theorems in topological nonlinear analysis is the Rabinowitz
global bifurcation theorem. Rabinowitz discovered that under certain circumstances a
local linearized analysis forces the existence of branching point of nontrivial solutions of
nonlinear eigenvalue problem. This is a very powerful result that is quoted very often.
More precisely, Rabinowitz has proved that nontriviality of the bifurcation index implies
the existence of a closed connected set of nontrivial solutions, branching from the set of
trivial solutions, which is either unbounded or come back to the set of trivial solutions.

In this section we consider system of linear elliptic differential equations. The aim of
this section is to study linear operator induced by this system and to compute bifurcation
indices given by Lemma 2.4.
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Let A be a symmetric (m × m)−matrix and Ω ⊂ RN be an open and bounded subset.
Consider the following system of linear elliptic differential equations{

−∆u = Au in Ω
u = 0 on ∂Ω

(3.1)

Define a separable Hilbert space H =
m⊕

i=1

H1
0(Ω) with scalar product

〈u, v〉H =
m∑

i=1

〈ui, vi〉H1
0(Ω) =

∫
Ω

∇u(x)∇v(x) dx,

for u = (u1, . . . , um), v = (v1, . . . , vm) ∈ H.

Remark 3.1. If we consider RN as an orthogonal representation of the group SO(2) and
Ω ⊂ RN is an open, bounded and SO(2)−invariant subset then (H, 〈·, ·〉H) is an orthogonal
representation of the group SO(2) with an action given by g · u(x) = u(gx).

Define functional Φ ∈ C1
SO(2)(H, R) as follows Φ(u) =

1

2
〈u, u〉H −

1

2

∫
Ω

Au(x) · u(x) dx.

Lemma 3.1. The gradient ∇Φ : H → H is a linear, self-adjoint, SO(2)−equivariant
operator of the form ∇Φ(u) = u − LAu, where LA = A · ((−∆)−1 · IdRm) : H → H is a

compact operator given by formula 〈LAu, v〉H =

∫
Ω

Au(x)v(x)dx.

Let us denote by σ(A) the spectrum of A. We will denote by µ(α) the multiplicity of
the eigenvalue α ∈ σ(A). Additionally, define σ+(A) = σ(A) ∩ (0, +∞) and σ−(A) =
σ(A) ∩ (−∞, 0).
Denote by σ(−∆; Ω) = {λk : 0 < λ1 < λ2 ≤ . . . ≤ λk < . . .} the eigenvalues of the
following linear problem {

−∆u = λu in Ω,
u = 0 on ∂Ω.

(3.2)

Let V−∆(λk) denote eigenspace of −∆ corresponding to eigenvalue λk ∈ σ(−∆; Ω). Addi-
tionally put µ(λk) = dim V−∆(λk) i.e. µ(λk) is the multiplicity of λk.

Lemma 3.2. The following conditions are equivalent:

(1) system (3.1) possesses nonzero solution,
(2) operator Id− LA : H → H is not an isomorphism,
(3) σ(−∆; Ω) ∩ σ+(A) 6= ∅.

The above lemma has been proved in [6] for n = 2. The same proof remains valid for
n > 2.
The Jordan form of A will be denoted by J(A). Denote by S(m, R) the set of symmetric
real (m×m)−matrices.

Lemma 3.3. Let A ∈ S(m, R). Then there is a continuous path A : [0, 1] → S(m, R)
such that A(0) = A, A(1) = J(A) and σ(A(t)) = σ(A) for any t ∈ [0, 1].
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The easy proof of the above lemma is left to the reader.

Lemma 3.4. Assume that σ(−∆; Ω) ∩ σ(A) = ∅. Then

∇SO(2) − deg(Id− LA, Dγ(H)) = ∇SO(2) − deg(Id− LJ(A), Dγ(H)) =

=
∏

αj∈σ(A)∩(λ1,+∞)

(
∇SO(2) − deg

(
Id− Lαj

, Dγ

(
H1

0 (Ω)
)))µ(αj) ,

where Lαj
= αj · (−∆)−1.

Proof. By Lemmas 3.1, 3.2 the operator Id−LA : H → H is an SO(2)−equivariant, self-
adjoint isomorphism of the form compact perturbation of the identity. Let A(t), t ∈ [0, 1]
be a path of symmetric matrices given by Lemma 3.3. Since σ(A(t)) = σ(A) for any
t ∈ [0, 1], Id− LA(t) : H → H is a family of SO(2)−equivariant, self-adjoint isomorphism
of the form compact perturbation of the identity. Applying homotopy invariance of the
degree for SO(2)−equivariant gradient maps we obtain ∇SO(2) − deg(Id− LA, Dγ(H)) =
∇SO(2) − deg(Id− LJ(A), Dγ(H)).

Since Id− LJ(A) : H =
m⊕

i=1

H1
0(Ω) → H is a product map, we obtain

∇SO(2) − deg(Id− LJ(A), Dγ(H)) =
∏

αj∈σ(A)

(
∇SO(2) − deg

(
Id− Lαj

, Dγ

(
H1

0 (Ω)
)))µ(αj) =

=
∏

αj∈σ(A)∩(λ1,+∞)

(
∇SO(2) − deg

(
Id− Lαj

, Dγ

(
H1

0 (Ω)
)))µ(αj) .

which completes the proof. �

For α ∈ σ(A) ∩ (λ1, +∞) define Q(α) =
⊕
λk<α

V−∆(λk).

Lemma 3.5. Assume that σ(−∆; Ω) ∩ σ(A) = ∅. Then,

∇SO(2)−deg(Id−LA, Dγ(H)) =
∏

αj∈σ(A)∩(λ1,+∞)

∇SO(2) − deg(−Id, Dγ(
⊕

λk<αj

V−∆(λk))

µ(αj)

.

Proof. By Lemma 3.4 we have

∇SO(2) − deg(Id− LA, Dγ(H)) =

=
∏

αj∈σ(A)∩(λ1,+∞)

(
∇SO(2) − deg

(
Id− Lαj

, Dγ

(
H1

0 (Ω)
)))µ(αj) .

That is why applying Theorem 2.4 we obtain the following∏
αj∈σ(A)∩(λ1,+∞)

(
∇SO(2) − deg

(
Id− Lαj

, Dγ

(
H1

0 (Ω)
)))µ(αj) =
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=
∏

αj∈σ(A)∩(λ1,+∞)

∇SO(2) − deg(−Id, Dγ(
⊕

λk<αj

V−∆(λk))

µ(αj)

,

which completes the proof. �

Let us consider family of linear elliptic differential equations of the form{
−∆u = λAu in Ω,

u = 0 on ∂Ω.
(3.3)

Lemma 3.6. The following conditions are equivalent

(1) equation (3.3) possesses nonzero solution,

(2) λ ∈
⋃

λk∈σ(−∆;Ω)

⋃
α∈σ(A)\{0}

{
λk

α

}
.

The proof of the above lemma is a direct consequence of a Lemma 3.2.

Fix
λk0

αj0

∈
⋃

λk∈σ(−∆;Ω)

⋃
αj∈σ(A)\{0}

{
λk

αj

}
. Notice that there is ε > 0 such that

[
λk0

αj0

− ε,
λk0

αj0

+ ε

]
∩

 ⋃
λk∈σ(−∆;Ω)

⋃
αj∈σ(A)\{0}

{
λk

αj

} =

{
λk0

αj0

}
(3.4)

For αj ∈ σ(A) \ {0} define W
(

αj,
λk0

αj0

)
= R[2, 0]⊕

⊕
λk<

λk0
αj0

αj

V−∆(λk).

In the following lemma we deliver formula for bifurcation index.

Lemma 3.7. Fix λk0 ∈ σ(−∆; Ω) and αj0 ∈ σ±(A). Then

BIF
(

λk0

αj0

)
=

= ±
∏

αj∈σ±(A)

(
∇SO(2) − deg

(
−Id, Dβ

(
W
(

αj,
λk0

αj0

))))µ(αj)

?

?
((
∇SO(2) − deg(−Id, Dβ(V−∆(λk0)))

)µ(αj0
) − I

)
.

Proof. Suppose that αj0 ∈ σ+(A). Notice that from Lemma 3.4 and (3.4) it follows that
for sufficiently small ε > 0 we have

BIF
(

λk0

αj0

)
=

= ∇SO(2) − deg

(
Id−

(
λk0

αj0

+ ε

)
LA, Dβ(H)

)
−
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−∇SO(2) − deg

(
Id−

(
λk0

αj0

− ε

)
LA, Dβ(H)

)
=

= ∇SO(2) − deg

(
Id−

(
λk0

αj0

+ ε

)
LJ(A), Dβ(H)

)
−

−∇SO(2) − deg

(
Id−

(
λk0

αj0

− ε

)
LJ(A), Dβ(H)

)
=

=
∏

αj∈σ+(A)

(
∇SO(2) − deg

(
Id−

(
λk0

αj0

+ ε

)
Lαj

, Dβ

(
H1

0(Ω)
)))µ(αj)

−

−
∏

αj∈σ+(A)

(
∇SO(2) − deg

(
Id−

(
λk0

αj0

− ε

)
Lαj

, Dβ

(
H1

0(Ω)
)))µ(αj)

.

Consequently taking into account the above and Theorem 2.4 we obtain the following

BIF
(

λk0

αj0

)
=

=
∏

αj∈σ+(A)\{αj0
}

(
∇SO(2) − deg

(
Id− λk0

αj0

Lαj
, Dβ

(
H1

0(Ω)
)))µ(αj)

?

?

((
∇SO(2) − deg

(
Id−

(
λk0

αj0

+ ε

)
Lαj0

, Dβ

(
H1

0(Ω)
)))µ(αj0

)

−

−
(
∇SO(2) − deg

(
Id−

(
λk0

αj0

− ε

)
Lαj0

, Dβ

(
H1

0(Ω)
)))µ(αj0

)
)

=

=
∏

αj∈σ+(A)

(
∇SO(2) − deg

(
−Id, Dβ

(
W
(

αj,
λk0

αj0

))))µ(αj)

?

?
((
∇SO(2) − deg (−Id, Dβ(V−∆(λk0)))

)µ(αj0
) − I

)
,

which completes the proof.
Suppose that αj0 ∈ σ−(A). The proof of this case is in fact literally the same as proof
presented above.

�

Let us formulate important consequences of Lemma 3.7. These results will be extremely
useful in the next section.

Lemma 3.8. Let λk0 ∈ σ(−∆; Ω) and αj0 ∈ σ(A) \ {0}. Then the following conditions
are equivalent

(1) BIF
(

λk0

αj0

)
= Θ ∈ U(SO(2)),

(2) V−∆(λk0) is a trivial SO(2)−representation and µ(αj0) · µ(λk0) is even.
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Proof. (1) ⇒ (2) Taking into account Lemmas 2.2, 3.7 and (2.2) we obtain the following ∏
αj∈σ+(A)

(
∇SO(2) − deg

(
−Id, Dβ

(
W
(

αj,
λk0

αj0

))))µ(αj)


SO(2)

= ±1. (3.5)

Since

(
BIF

(
λk0

αj0

))
SO(2)

= 0 and (2.2), (3.5),((
∇SO(2) − deg(−Id, Dβ(V−∆(λk0)))

)µ(αj0
) − I

)
SO(2)

= 0 (3.6)

Taking into consideration Lemma 2.2 and (2.2) we obtain that equality (3.6) holds true
iff µ(αj0) · µ(λk0) is an even number. Moreover, since (2.2), (3.5) and (3.6) we have

BIF
(

λk0

αj0

)
= ±

[(
∇SO(2) − deg(−Id, Dβ(V−∆(λk0)))

)µ(αj0
) − I

]
(3.7)

Combining BIF
(

λk0

αj0

)
= Θ with (3.7) we obtain that V−∆(λk0) is a trivial representation

of the group SO(2).
(2) ⇒ (1) Since µ(αj0) · µ(λk0) is even, equality (3.6) holds true. Combining (3.5) with
(3.6) we obtain (3.7). Since V−∆(λk0) is a trivial SO(2)−representation and (3.7),

BIF
(

λk0

αj0

)
= Θ ∈ U(SO(2)),

which completes the proof. �

Notice that we can formulate Lemma 3.8 in the following equivalent way.

Remark 3.2. Let λk0 ∈ σ(−∆; Ω) and αj0 ∈ σ(A) \ {0}. Then BIF
(

λk0

αj0

)
6= Θ ∈

U(SO(2)) iff one of the following conditions is fulfilled

(1) µ(λk0) · µ(αj0) is odd,
(2) V−∆(λk0) is a nontrivial representation of the group SO(2).

Remark 3.2 justify the following definition.

Definition 3.1. A pair (λk0 , αj0) ∈ σ(−∆; Ω) × (σ(A) \ {0}) is said to be essential if
V−∆(λk0) is a nontrivial representation of the group SO(2) or µ(λk0) · µ(αj0) is odd.

In Lemmas 3.9, 3.10 we formulate sufficient conditions for which the bifurcation index is
an element of U±(SO(2)).

Lemma 3.9. Fix λk0 ∈ σ(−∆; Ω) and αj0 ∈ σ±(A). Moreover, assume that

µ(αj0) · µ(λk0) +
∑

α∈σ±(A)

dimW
(

α,
λk0

αj0

)
· µ(α)

is even. Then BIF
(

λk0

αj0

)
∈ U±(SO(2)).
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Proof. Assume that αj0 ∈ σ+(A). Suppose that both numbers

µ(αj0) · µ(λk0),
∑

α∈σ+(A)

dimW
(

α,
λk0

αj0

)
· µ(α)

are even. By Lemmas 2.1 , 2.2 and (2.2) we obtain the following

(
∇SO(2) − deg(−Id, Dβ(V−∆(λk0)))

)µ(αj0
) − I ∈U+(SO(2)) (3.8)∏

α∈σ+(A)

(
∇SO(2) − deg

(
−Id, Dβ

(
W
(

α,
λk0

αj0

))))µ(α)

∈U+(SO(2)) (3.9)

Combining (3.8), (3.9) with Lemma 3.7 and Remark 2.1 we obtain that BIF
(

λk0

αj0

)
∈

U+(SO(2)).

Suppose that both numbers µ(αj0) · µ(λk0),
∑

α∈σ+(A)

dimW
(

α,
λk0

αj0

)
· µ(α) are odd. By

Lemmas 2.1, 2.2 and (2.2) we obtain the following

(
∇SO(2) − deg(−Id, Dβ(V−∆(λk0)))

)µ(αj0
) − I ∈U−(SO(2)) (3.10)∏

α∈σ+(A)

(
∇SO(2) − deg

(
−Id, Dβ

(
W
(

α,
λk0

αj0

))))µ(α)

∈U−(SO(2)) (3.11)

Combining (3.10), (3.11) with Lemma 3.7 and Remark 2.1 we obtain that BIF
(

λk0

αj0

)
∈

U+(SO(2)).
Assume that αj0 ∈ σ−(A). Repeating in this case in fact the same proof as above we

obtain BIF
(

λk0

αj0

)
∈ U−(SO(2)). �

Proof of Lemma 3.10 is very similar to the proof of Lemma 3.9. Therefore it is left to the
reader.

Lemma 3.10. Fix λk0 ∈ σ(−∆; Ω) and αj0 ∈ σ±(A). Moreover, assume that

µ(αj0) · µ(λk0) +
∑

α∈σ±(A)

dimW
(

α,
λk0

αj0

)
· µ(α)

is odd. Then BIF
(

λk0

αj0

)
∈ U∓(SO(2)).

4. Nonlinear Equation

In this section we study weak solutions of the system of nonlinear elliptic differential
equations of the form {

−∆u = ∇uF (u, λ) in Ω
u = (u1, . . . , um) = 0 on ∂Ω

(4.1)
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where

(1) Ω ⊂ RN is an open, bounded, SO(2)−invariant subset of an orthogonal SO(2)−re-
presentation RN , with boundary of the class C1−,

(2) F ∈ C2(Rm × R, R),

(3) F (x, λ) =
λ

2
〈Ax, x〉+ η(x, λ), where

(a) A is a symmetric (m×m)−matrix,
(b) ∇xη(0, λ) = 0, for any λ ∈ R,
(c) ∇2

xη(0, λ) = 0, for any λ ∈ R,
(4) for any λ ∈ R there are Cλ > 0 and 1 ≤ pλ < (N + 2)(N − 2)−1 such that for any

(x, λ) ∈ Rn×R the following inequality holds true | ∇xF (x, λ) |≤ Cλ (1+ | x |pλ) .

Consider Hilbert space H =
m⊕

i=1

H1
0(Ω) with scalar product

〈u1, u2〉H =
m∑

i=1

〈u1,i, u2,i〉H1
0(Ω) =

m∑
i=1

∫
Ω

(∇u1,i(x),∇u2,i(x)) dx,

where ui = (ui,1, ui,2, . . . , ui,m) ∈ H, i = 1, 2 and (·, ·) is the usual scalar product in Rm.

Remark 4.1. It is known that (H, 〈·, ·〉H) is an orthogonal SO(2)−representation with
SO(2)−action given by g(u(x)) = u(gx).

Define functional Φ : H× R → R as follows Φ(u, λ) =
1

2
〈u, u〉H −

∫
Ω

F (u, λ) dx.

Remark 4.2. Under the above assumptions we have Φ ∈ C2
SO(2)(H × R, R). Moreover,

critical points of Φ (with respect to u) are in one-to-one correspondence with weak solutions
of system (4.1).

Notice that for u = (u1, . . . , um), ϕ = (ϕ1, . . . , ϕm) ∈ H we have

〈∇uΦ(u, λ), ϕ〉H = DuΦ(u, λ)(ϕ) = 〈u− λLA(u)−K(u, λ), ϕ〉H.

where

(1) LA = A · ((−∆)−1 · IdRm) : H → H is linear, bounded, compact, self-adjoint and

SO(2)−equivariant operator given by 〈LAu, v〉H =

∫
Ω

Au(x)v(x)dx.

(2) K : H×R → H is a compact, SO(2)−equivariant operator such that K(0, λ) = 0
and DK(0, λ) = 0 for any λ ∈ R.

The following theorem is the Rabinowitz global bifurcation theorem for systems of ellip-
tic differential equations considered on SO(2)−invariant domains. It yields information
about global behaviour of connected sets of weak solutions of system (4.1). This theo-
rem deliver sufficient conditions for the existence of branching points of weak solutions of
system (4.1).

Theorem 4.1. Fix an essential pair (λk0 , αj0) ∈ σ(−∆; Ω)× σ(A). Then

(1) either C
(

λk0

αj0

)
is unbounded in H× R,
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(2) or C
(

λk0

αj0

)
is bounded in H× R. Moreover, the following conditions are satisfied

(a) C
(

λk0

αj0

)
∩ ({0} × R) = {0} ×

(
p⋃

s=0

{
λks

αjs

})
, where

(i) λk0 , λk1 , . . . , λkp ,∈ σ(−∆; Ω),
(ii) αj0 , αj1 , . . . , αjp ∈ σ(A) \ {0},

(b)
p∑

s=0

BIF
(

λks

αjs

)
= Θ ∈ U(SO(2)) (4.2)

Proof. To prove this theorem it is enough to study zeros of the operator∇uΦ : H×R → H.

From Lemma 3.2 it follows that ∇2
uΦ
(
0,

λk0

αj0

)
= Id − λk0

αj0
LA is not an isomorphism. By

assumptions and Lemma 3.2 we obtain that BIF
(

λk0

αj0

)
6= Θ. The rest of the proof is a

direct consequence of Theorem 2.5. �

Below we prove two consequences of Theorem 4.1. Namely, in Corollary 4.1 we formulate
conditions which exclude one of the possibilities in the alternative given by Theorem 4.1
can be excluded. Moreover, in Corollary 4.2 we describe some properties of bounded
continua.

Corollary 4.1. Let pair (λk0 , αj0) ∈ σ(−∆; Ω)× σ(A) be essential. Assume additionally
that

(1) σ∓(A) = ∅,
(2) µ(αj) is even for any αj ∈ σ±(A).

Then continuum C
(

λk0

αj0

)
is unbounded in H× R.

Proof. Suppose that σ−(A) = ∅. By Lemma 3.9 it follows that BIF
(

λk

αj

)
∈ U+(SO(2))

for any λk ∈ σ(−∆; Ω) and αj ∈ σ+(A). Since pair (λk0 , αj0) ∈ σ(−∆; Ω) × σ+(A) is

essential, BIF
(

λk0

αj0

)
6= Θ ∈ U(SO(2)). Summing up, condition (4.2) in Theorem 4.1 can

never be satisfied. Suppose now that σ+(A) = ∅. The proof in this case is in fact the same
as the proof of the case σ−(A) = ∅. �

In the following corollary we describe bounded continua of nontrivial solutions of (4.1).

Corollary 4.2. Let (λk0 , αj0) ∈ σ(−∆; Ω) × σ(A) be an essential pair. Assume additio-
nally that

(1) αj0 ∈ σ±(A),
(2) µ(αj) is even for any αj ∈ σ±(A).

If continuum C
(

λk0

αj0

)
is bounded in H× R then

σ∓(A) 6= ∅ and C
(

λk0

αj0

)
∩

{0} ×
 ⋃

αj∈σ∓(A)

⋃
λk∈σ(−∆;Ω)

{
λk

αj

} 6= ∅.
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Proof. Suppose that αj0 ∈ σ+(A). By assumption and Lemma 3.9 it follows that

(1)
λk0

αj0
> 0,

(2) BIF
(

λk0

αj0

)
6= Θ ∈ U(SO(2)),

(3) BIF
(

λk

αj

)
∈ U+(SO(2)) any λk ∈ σ(−∆; Ω) and αj ∈ σ+(A).

Suppose the assertion of the lemma is false. Hence

σ−(A) = ∅ or C
(

λk0

αj0

)
∩ ({0} × R) ⊂ {0} × (0, +∞) (4.3)

Taking into account (1) − (3) and (4.3) we show that equality equality (4.2) in Theorem
4.1 can never be satisfied, a contradiction. In fact we can repeat the above proof for
αj0 ∈ σ−(A). �

5. Illustration

In this section we illustrate the abstract results proved in the previous section. Let
Bn ⊂ Rn denote an open disc of radius 1 centered at the origin. We will study system
(4.1) with Ω = B2 or Ω = B3.

First of all let us describe eigenspaces of −∆ as representations of the group SO(2).
Put Ω = B2. It is known that if λk0 ∈ σ(−∆; B2) then there exists k ∈ N ∪ {0} such

that V−∆(λk0) ≈ R[1, k]. In other words any eigenspace of −∆ is either one-dimensional
trivial or two-dimensional nontrivial representation of the group SO(2).

Put Ω = B3. We know that if λk0 ∈ σ (−∆; B3) , then there exists k ∈ N ∪ {0} such
that V−∆(λk0) ≈ R[1, 0]⊕ R[1, 1]⊕ ...⊕ R[1, k].

From now on let Ω = B2 or Ω = B3. Therefore for fixed λk0 ∈ σ(−∆; Ω) we have the
following assertion

(i) if µ(λk0) > 1, then for any αj0 ∈ σ(A) \ {0} the pair (λk0 , αj0) is essential,
(ii) if µ(λk0) = 1, then the pair (λk0 , αj0) is essential iff µ(αj0) is odd.

Remark 5.1. Let us fix a pair (λk0 , αj0) ∈ σ(−∆; Ω) × (σ(A) \ {0}) such that µ(λk0) >
1 or µ(αj0) is odd. Then all the assumptions of Theorem 4.1 are fulfilled. Therefore(

0,
λk0

αj0

)
∈ H × R is a branching point of weak solutions of system (4.1). Moreover,

continuum C
(

λk0

αj0

)
⊂ H× R satisfies thesis of Theorem 4.1.

As a direct consequence of Corollary 4.1 we obtain the following remark.

Remark 5.2. Assume that σ∓(A) = ∅ and that µ(α) is even for any α ∈ σ±(A). If

(λk0 , αj0) ∈ σ(−∆; Ω)× σ±(A) is a pair such that µ(λk0) > 1, then continuum C
(

λk0

αj0

)
is

unbounded in H× R.

The following remark is a consequence of Corollary 4.2.
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Remark 5.3. Assume that µ(α) is even for any α ∈ σ±(A). Let us fix (λk0 , αj0) ∈
σ(−∆; Ω)× σ±(A) such that µ(λk0) > 1. If continuum C

(
λk0

αj0

)
is bounded in H×R then

σ∓(A) 6= ∅ and C

(
λk0

αj0

)
∩

{0} ×
 ⋃

αj∈σ∓(A)

⋃
λk∈σ(−∆;Ω)

{
λk

αj

} 6= ∅.

6. Final Remarks

Fix an inessential pair (λk0 , αj0) ∈ σ(−∆; Ω)×(σ(A) \ {0}) . In this situation we can not

apply Theorem 4.1 because BIF
(

λk0

αj0

)
= Θ ∈ U(SO(2)). On the other hand using the

Lapunov-Schmidt reduction we can locally convert the problem of finding of bifurcation
points of solutions of system (4.1) to a finite-dimensional one. Next using the finite-

dimensional Morse theory (or the Conley index technique) we can prove that

(
0,

λk0

αj0

)
∈

H × R is a bifurcation point of solutions of system (4.1). It is worth to point out that
it can happen that this point is not a branching point of solutions of system (4.1), see
[2, 3, 15, 19, 32] for examples and discussion.

Notice that to study weak solutions of system (4.1) one can also apply the classical Rabi-
nowitz global bifurcation theorem, see for instance [16, 20, 23, 24]. In other words one can
forget about SO(2)−invariance of Ω and variational structure of system (4.1). To apply

the Rabinowitz alternative we have to compute the bifurcation index BIFLS

(
λk0

αj0

)
∈ Z

in terms of the Leray-Schauder degree. However, for a pair (λk0 , αj0) ∈ σ(−∆; Ω) ×
(σ(A) \ {0}) such that µ(αj0) · µ(λk0) is even we have BIFLS

(
λk0

αj0

)
= 0 ∈ Z. If in addi-

tion V−∆(λk0) is a nontrivial SO(2)−representation then BIF
(

λk0

αj0

)
6= Θ ∈ U(SO(2)).

In other words if a pair (λk0 , αj0) ∈ σ(−∆; Ω) × (σ(A) \ {0}) is essential and such that
µ(αj0) · µ(λk0) is even then assumptions of Theorem 4.1 are fulfilled and the classical
Rabinowitz alternative is not applicable. Moreover, for the same reason the classical Ra-
binowitz alternative is not applicable under the assumptions of Corollary 4.1 at any point(

0,
λk0

αj0

)
∈ H× R, where (λk0 , αj0) ∈ σ(−∆; Ω)× (σ(A) \ {0}) .

We show in Corollary 4.1 that under some easy to verify assumptions there are un-
bounded continua of nontrivial solutions of system (4.1). It is clear that Corollary 4.1 is
a generalization of Theorem 3.3 of [29]. Namely, if the number m of equations in system
(4.1) is even and A = IdRm then we obtain Theorem 3.3 of [29].
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[13] T. J. Healey & H. Kielhöfer, Preservation of Nodal Structure on Global Bifurcating Solution Branches
of Elliptic Equations with Symmetry, J. Diff. Equat. 106, (1993), 70-89,
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